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Abstract We consider lhe directed polymer problem in two dimensions on a lorus a zero 
temperature. For each site x we can compute the free energy e(x )  of the conformation of the 
polymer which goes by this site. We analyse the geometrid properties of t h i s  free energy 
landscape e ( x )  which has the original property of being translotionally invarianl in terms of the 
one-point probability density of free energy. In particular, we study the stat is t id  distribution of 
energies e as a function of the syslem size, and the spatial correlations pamllel and perpendicular 
to the mean orientation of the polymer. The free energy field is shown to display an anisotropic 
self-afhne svucture. The scaling exponents obtained numerically are in good agreement with 
Dredicted values 

1. Introduction 

The conformation of directed polymers (DP) at zero temperature in a random medium is a 
problem which has received a lot of attention recently. In particular, the exact solution of the 
scaling properties of the geometry of the optimal conformation, and of the free energy has 
been obtained in two dimensions by Kardar, Parisi and ulang (KPZ) [l]. Since then many 
variants have been studied and the KPZ now constitutes the paradigm for many different 
statistical models developed in various contexts. 

Among the main applications which have been considered beside polymers in a random 
medium, let us mention interfaces in random exchange king models [2], Ising spin-glasses 
in the high-temperamre limit [3], and statistical growth models such as the Eden model 
[1,4,5]. In the context of transport phenomena, the DP problem is relevant for the non- 
Newtonian (‘Bingha”) fluid [6] and foam I71 flow in porous media, and perfect plasticity 
[SI. Derived from the latter example, extensions to earthquake models [9] and to fracture 
paths [lo] have recently been proposed. 

In most applications, only the optimal conformation of the polymers matters so that, for 
a given medium, a single directed path and a free energy are estimated, However, it is clear 
that, in a given medium, there is much more information than just the previously mentioned 
quantities. Zhang has considered the sensitivity to noise [ l l ]  of the conformation of the DP, 
which reveal interesting effects. 

In [12], in the discussion of the relation between the DP model and the interfacial growth 
model described by Kpz, Cates and Ball have shown that the height of the interface at a 
position r and time t is the negative of the free energy of a polymer of length t with 
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one end kept at a fixed position r .  This mapping can be done in the continuum [12] 
using the Cole-Hopf transformation introduced in [I] by directly relating the Langevin 
equation for the growth to the Burgers' equation which governs thc partition function of 
the polymer, or applied to a discrete model such as the Eden growth model which can be 
put in corespondence with the DP problem on the same lattice using the notion of waiting 
times 1.51. 

Using this construction, the well studied geometric properties-and, in particular, the 
spatial correlations-of growth models governed by the KFZ equation can be used to analyse 
some spatial correlation in the free energy landscape of a polymer in a given medium. 

However, using this mapping, one has to resort to particular boundary conditions, which 
introduce a bias. A full discussion of this is presented in [12]. We present here a peculiar 
type of geometry and boundary conditions such that all sites in the lattice are treated on the 
same footing. The construction we will use is very artificially related to a growth model. 
However, it is suited to the analysis of spatial comelations, in particular, in the direction 
along the polymer which cannot be obtained otherwise. For the application of the flow of 
Bingham fluids in a porous medium, the construction we will introduce is a natural way 
of determining the set of admissible paths for flow at a given pressure, by thresholding the 
'energy' landscape at a value related to the pressure drop imposed. 

A simple procedure can be implemented to study the free energy of the minimal directed 
path with the constraint that the path goes by a fixed point x and with toroidal boundary 
conditions imposed on the lattice. Using this construction, we derive the map of energies 
e ( x )  for all sites x of a given medium. This free energy landscape with these kind of 
boundary conditions has never been considered before, and the purpose of this article is to 
report on some of its statistical properties. 
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2. Energy landscape 

We consider a square lattice whose bonds are oriented at &r/4 with respect to the x- 
axis. Periodic boundary conditions are implemented in both directions along the x-axis and 
perpendicular to it, so that the topology is that of a torus. The lattice size is L, x L,. Each 
bond i in the network is assigned a random weight wi. An admissible polymer conformation 
P is restricted to directed periodic paths, oriented along the x-axis. To each such path, we 
compute a free energy 

E(P) = wi 
isP 

The conformation a polymer will adopt at zero temperature is the path which has the 
lowest energy among all paths P. Its free energy will be 

E' = min E(P) .  
P 

We will call P* the path for which the minimum is reached, E* = E(P*). We can also 
consider the set of paths P, which go through any prescribed site x. The minimum energy 
over this set is 

E ( x )  = min E(P,) 
Pz (3) 
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Figure 1. An example of a free energy landscape on a 1W x 100 lanice. The energy is coded 
in grey level from lhe lowest (white) to be highest (black). To illusmte the periodic boundary 
conditions. two periods are shown in each direction. 

We furthermore introduce the energy cost per bond e ( x )  = E(x) /L , .  Since the dominant 
behaviour of E(x)  is a linear increase with L,, e is expected to be directly comparable 
between different lattices. The field e ( x )  is the energy landscape. Figure 1 gives one such 
example for L, = L, = 100 with a grey-scale coding for the e from white (lowest energy) 
to black (highest). Evidently, all sites which belong to ’PI will have an energy E ( x )  = E*, 
and thus P’ appears as a white line on the figure. 

The computation of the energy field e (x )  does not involve any difficulties. A transfer- 
matrix approach [6] has been used to compute E ( x )  starting from each individual site x ,  
and taking account the periodic boundary conditions. 

In order to further relate the field e to the KPZ growth model, we note that the value 
e@) at a given point corresponds to the height of the interface at the position x after a time 
L,, with an initial seed at the point x .  Thus to determine the lanscape we have to consider 
L,  x L, different seeds with the same noise. The latter problem is rather articificial for the 
growth problem, but it clearly reveals some additional information in connection with the 
directed polymer problem. 

3. Distribution of energies 

In order to characterize the field e (x )  we first analyse the one-point distribution function 
of e. We will study in the next section the pair distribution which will reveal the spatial 
correlations in the field. 

Let us first recall a well known property [I]  for the distribution of e* = E’/& As the 
system size increases, the average minimal energy per bond will tend to a constant, with. 
however, non-analytic corrections: 

e*(Lx, L,) = e& + Afl’”‘ + EL;’/”L + higher-order terms (4) 
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where A and 5 are two constants. In two dimensions, the exponents V I ,  = $ and v l  = 1. 
The asymptotic value e& has been estimated to the value 0.21 in [6]. The standard deviation, 
a of e' vanishes as the system size increases with a similar expression 
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The difference of scaling in the x -  and y-directions comes from the existence of two different 
correlation lengths, along and perpendicular to the mean orientation of the polymer, with 
different scaling behaviours. 

The statistical distribution of energies for finite-size systems has been studied 
numerically in [13,14] using point-like seeds and free end-points. The motivation of these 
two studies was to check numerically the theoretical predictions by Bouchand and Orland 
[ 151 concerning the value of the moments ratio, for the end-point distribution and for the 
free energy distribution. Although the boundary conditions are quite different from the one 
we have used, the results presented below are quite comparable. 

Let us consider the distribution of energies e in the landscapes obtained for the entire 
lattice. It is observed that the histogram of e values becomes narrower as the system size 
increases. Therefore it is expected that most e values will concentrate around the asymptotic 
value ek when the system size diverges, since the absolute minimum is necessarily contained 
in the histogram. Due to the difference of scaling in the x- and the y-directions, it is 
expected that for square geometries, or even for rectangles having a moderate aspect ratio, 
the extension of the lattice along the x direction L ,  will be the most stringent factor which 
limits the width of the distribution of the absolute minimum energy (the first case in (5)).  
Thus, extending the results (4) and (5) to the entire lattice, we are led to propose the 
following scaling form for the distribution p ( e )  of e: 

with eo = e* Moreover, we consider ea in the latter equations a free parameter to be fitted 
from the quality of the data collapse, obtained over various system sizes. 

Figure 2 shows the data collapse obtained for eo = 0.230. We see on the figure that 
an excellent agreement is found for a set of 12 different system sizes. The estimate of 
eo is slightly larger than the previous estimate of e;. The function 9 is shown with a 
semi-log scale and we see that the distribution can be nicely fitted by a Gaussian. In 
[13,14], it was also found that a Gaussian provided a good fit to the distribution of free 
energy (obtained using different boundary conditions as mentioned above), however, a non- 
vanishing skewness was measured in qualitative but not quantitative agreement with [15]. 

In [16], a theoretical study of the statistical distribution of the minimal energy was 
presented for a simple geometry, namely that of a hierarchical lattice. It was shown, in 
particular, that the distribution is not Gaussian, and that the tails of the distribution behave 
as exp(-le - eklY* with two exponents y+ and y- for e ,  larger and smaller than e&, 
respectively. These exponents have been estimated to be y+ = 3 and y- = f. 

The apparent discrepancy between the latter result and the numerical result reported in 
figure 2 is, however, to be considered very carefully. Indeed, the two exponents are only 
apparent for extremely low values of the probability. Dealing with a hierarchical lattice it 
is possible to have access to probability as small as compared with at most for 
Monte Carlo simulations on a Euclidian lattice. If we restrict the range of analysis on the 

m: 
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Figure 2. Distribution of energies for vnrious system sizes (indicated in the insat) in rescaled 
unitf: Iog(p(e)/vma) vecssus E = (e -  eo)^;''?' using eo = 0.230. 

hierarchical lattice to a comparable level, then the probability distribution also appears to 
be well fitted by a Gaussian. Thus, the characterization of the probability distribution done 
on the hierarchical lattice, although more rigorous, appears to be rather academic, and it is 
hardly possible to be checked on Euclidian geometries. 

4. Spatial correlations 

Let us now turn to the study of spatial correlations in the energy landscape. We have seen 
above that the x -  and y-directions have distinct scaling properties. Therefore, we analysed 
the correlations independently, in those two directions. We computed systematically, for 
all lines parallel to a given axis, the power spectra of the energy profiles and averaged the 
results over the different lines and realizations. 

The power spectra obtained for various system sizes clearly revealed a power-law 
behaviour in an intermediate scale range. However, due to the finite size of the system, 
and the anisotropy of the correlations length, the small wavenumbers showed a saturation 
which rendered the determination of the scaling exponents unprecise. 

In order to clarify this scaling property, we have performed an independent computation 
in a strip-like geometry, where the length L,  is much greater than the width L, (the data 
shown below corresponds to L, > 250000 and L,  = 512). In this case, we have not 
computed the full energy landscape, but rather we have obtained the minimal energy to 
connect any point to the first row. For each line (truncated in pieces of length L y )  and row, 
we have computed the power spectrum. Along the mean orientation of the polymers, the 
energy increases linearly with the distance. In order to avoid the effect of such a bias, an 
end-to-end linear drift is substracted from each profile along x .  (Such a drift would give 
rise in the power spectrum to a power-law k-' which is trivially that of a periodic sawtooth 
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signal.) Moreover, transient effects (at small distance from the initial border) are eliminated 
by keeping the data generated in this early stage out of the averages so that the fluctuations 
are controlled by the width of the trip only. To this aim the initial part of the strip over a 
lehgth of the order of 10% of L, is not taken into account. 

I For this strip geometry, then the mapping between the DP problem and a KPZ growth 
model is fully valid including the boundary condition. The power spectrum of the free energy 
landscape along the y-direction can thus be compared directly to the Fourier transform of 
the height-height correlation function of the growth model considered in a similar geometry. 
Along the mean growth x-direction, after having removed the systematic bias due to the 
dominant linear increase of energy, correlations have not been considered before to our 
knowledge. 

Figures 3(a) and 3(b) show the obtained spectra in log-log coordinates. The dotted 
lines are a linear regression through the data in the scaling regime (omitting the largest 
wavenumbers) with slopes equal to 1.9f0.1 and 1.66iO.1, respectively. Let us introduce 
the following notations: 
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with 1'11 = 0.33 and 0.45. Thus the energy landscape can be seen as a self-affine 
surface with different roughness scaling exponents in the x -  and y-directions. 

We have introduced the roughness exponents so as to render more explicit their physical 
meaning. For points at a distance d, along the x-axis the fluctuations of energy scale as 
d:, whereas, if they are oriented along the y-axis, the fluctuations scale as d?. 

We have also complemented this study by the direct analysis of the fluctuations in energy 
along intervals yo < y < yo + A at fixed x, averaging over yo, in the first toroidal geometry 
introduced in the second section. The fluctuations were analysed using two independent 
estimates. The first is theRMS fluctuation SE(A)  = ( (E(y )Z) - (E(y ) )2 ) '12 ,  while the second 
is the difference between the maximum and the minimum value of E over the window. We 
have obtained a power-law increase SE(A) a AtL with cl = 0.45 and 0.51 for the RMS 
and the ma-min estimates, respectively, as shown in figure 4. The latter computation 
performed on the toroidal geometry is consistent with the previous power spectrum analysis 
where the polymer extended only from an initial border to the current site. 

We have also analysed the full statistical distribution of energy differences n(6E, d,) for 
pairs of sites at a varying distance d, along the y-axis. We have found that the distribution 
can be considered as constant for small energy differences, with a sharp cut-off above 
a characteristic SE* which itself is d,-dependent. The self-affinity previously identified 
suggests analysing the distribution in terms of the reduced variable U = SE/&, so that 
n(6E,dy )  could be re-expressed as 

Figure 5 shows the distribution u@(u) ,  i.e. the distribution of log(u). This plot has been 
obtained for a width L, = 128, and various values of dy = 4, 8, 16, 32, 64 and 128. We 
see that the size effect is correctly accounted for with a choice of f'l = 0.45. 

Briefly, the different methods used provided consistent estimates of the two exponents 
<L 0.45 f 0.05 and = 0.33 5c 0.05. 

Let us now present an argument which allows us to estimate the exponents <. Let us 
consider two points M and M' with the same x-coordinate, and located at a distance dy 
apart. The two minimal paths which go through M and M', respectively, are expected to 
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Figure 3. Average power spectrum ofenergy profiles (a) in the direction of the mean orientation 
of the polymers and (b)  perpendicular to it. The sh'aight lines shown on the gnphs "e 

linear regessions through the data with slopes 1.66 and 1.9, respectively. The lanice size 
is 250000 x 512. 

merge after some distance d, provided the length of the lattice L, is large enough compared 
to d,. The distance d, should scale as d;'"'. The difference in energy E ( M )  - E ( M ' )  
is only due to the fraction of the paths which are not in common, i.e. over a distance 6. 
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Figure 5. Rescaled distribution " ( U )  of lhe logarithm of energy difference S E  between two 
points locored at a distance d along the y-axis. The rescaled energy difference is U = S Eldci, 
The expanent used in this gnph is 0.45. 
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If we consider that when the paths are not joined they are statistically independent, we 
may use the above-stated result (5) which gives the scaling of the fluctuations in energy as 
I E ( M )  - E(M’)I - d, . Inserting the expression of dy in the latter expression gives a 
power-law increase of the fluctuations in energy with the distance dy with an exponent 

1-11”, 

Numerically, in two dimensions, the latter expression amounts to <l = f .  
Alternatively, one may have expected (L to be given directly by the self-&ne roughness 

exponent of the height profile in the KPZ growth model which is known [l] to be 4. This 
exponent is the one which is measured in the sbip-like geometry. In the toroidal geometry, 
it is not obvious that the same exponent holds. However, from the comparison between the 
two kinds of boundary conditions, it seems that these exponents are identical. 

For the longitudinal correlation, it is not possible to resort to known results in the growth 
model. In order to estimate <I] we use the self-affinity of the minimal paths in the x-y plane. 
Each such path is statistically invariant under the following transformation: x -+ A“Ox and 
y + h”Ay for any A. Therefore, we expect that the entire energy landscape obeys such an 
invariance. This implies that the energy fluctuation scaling exponents along both directions 
should be related through 

~11511 = VI51 . 
Combining this relation with (9), we obtain 

or in two dimensions, (11 = f .  The latter value has not been considered previously to our 
knowledge. These two expressions (9) and (1 1) are in good agreement with the numerically 
determined values. 

5. Conclusion 

We have studied the free energy landscape of directed polymers in a random medium using a 
particular type of toroidal boundary conditions which gives a translational invariance for the 
average free energy. The one-point distribution of energy has been shown to be described by 
a scaling form which accounts for the size effects. The latter result is consistent with other 
numerical studies [13,14] performed using standard boundary conditions. The two-point 
correlation functions parallel and perpendicular to the mean orientation of the polymers 
have been analysed numerically using different tools, and the resulting self-affine character 
of the energy distribution has been accounted for in a quantitative way by a simple scaling 
argument. The transverse correlations found in the free energy map are consistent with 
results known for the KPZ growth model which can be mapped onto the DP model with 
boundary conditions different from the one we introduced. The longitudinal correlations 
reported above have not been considered before to our knowledge. 

Such a statistical description of the energy field may shed some light on problems 
related to the directed polymer model, in particular away from criticality, i.e. when a certain 
tolerance is allowed on the free energy of the polymer (i.e. not simply considering the lowest- 
energy configuration), or models such as the one introduced in [9J, for non-zero values of the 
‘stress-drop’ parameter which brings the system away from the zero-temperature duected- 
polymer problem. 
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